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Abstract

Language models that generate vector spaces
for word embeddings show exciting promise
for semantic tasks, such as predicting analo-
gies. However, less work has been done on
how these models might capture other seman-
tic information that is useful for many natural
language applications, such as information ex-
traction and machine translation. In this pa-
per, we explore the use of vector space models
to capture semantic frames–linguistic seman-
tics related to encyclopedic knowledge–in sen-
tences. We use the state of the art Sentence
BERT model to generate sentence embeddings
for sentences in the FrameNet dataset that
contains over 200,000 hand-labeled sentences
with semantic frames, and perform cluster
analysis on the vector space to determine how
well clustered different semantic frames are.
We find that, overall, clusters are not well
formed in these vector spaces. We discuss the
reasons for these results, and present future
work for continuing this study.

1 Introduction

Frame semantics theory enables linguists to relate
linguistic semantics with encyclopedic knowledge
such that similar situations have the same semantic
frames. For example, the sentences “John sold a
car to Mary” and “Mary bought a car from John”
essentially represent the same situation – a transac-
tion between two people occurring – from different
perspectives. These semantic frames are useful for
many applications including information extraction
and machine translation. As such, initiatives such
as FrameNet (ICSI UC Berkeley, 2020) have at-
tempted to build a large semantic frame data set
that researchers can use as part of their research,
but generating the data set has required manual
annotation of over 200,000 sentences.

In this paper, we explore the ability of vector
space models of semantics to capture semantic

frames of sentences. Vector space models have
previously shown to effectively learn the seman-
tic relationship between single words (Mikolov
et al., 2013) and between documents of arbitrary
length (Le and Mikolov, 2014). We hypothesize
that the vector space generated using such models
may cluster sentences of the same frame together,
such as the examples with John and Mary earlier. If
this were accurate, it would allow initiatives such as
FrameNet to greatly expand the size of their corpus
with potentially related sentences since sentence
embeddings models work on unlabeled text data,
potentially improving the effectiveness of applica-
tions that use semantic frames down the line.

To conduct our study, we use pre-trained, state
of the art Sentence Bert models to generate word
embeddings for each sentence in the FrameNet cor-
pus (Reimers and Gurevych, 2019, 2020). The
FrameNet dataset has labels for words that are lex-
ical units or those that have some semantic frame
that other words or concepts relate to. These frames
span many categories, including places, actions
(such as manufacturing), emotion, and many more.
We use these frames to conduct a cluster analysis
of the embedding spaces to identify if individual se-
mantic frames are well clustered from one another.
We also examine how individual frames different in
their clustering between different Sentence BERT
models.

Our results show that overall clustering perfor-
mance is not very good. We hypothesize that this
could be due to the high-dimensionality of the sen-
tence BERT models, or because our models were
not fine-tuned on the FrameNet dataset we used.
We discuss how future work continuing this explo-
ration may want to address the limitations of our
work.



Figure 1: Example sentence from FrameNet annotated
with semantic frames.

2 Model

In our analysis, we study how well vector spaces
generated by neural language models cluster to-
gether sentences containing the same semantic
frames. While we initially wanted to use a pre-
trained doc2vec model for our analysis, we decided
against it since doc2vec models can be notoriously
poor performing on corpus that they are not trained
on. Instead, we use Sentence-Bert (SBERT), which
is a version of BERT fine-tuned with a siamese
network structure (Reimers and Gurevych, 2019,
2020). We make this choice because (1) SBERT
offers major computational advantages over BERT,
reducing the sentence similarity task from 65 hours
in BERT to 5 seconds with SBERT; (2) it recently,
in 2019, achieved state-of-the-art results on several
sentence-embedding tasks; and (3) it has several re-
liable, state-of-the-art pretrained models available,
released by the authors themselves.

The pre-trained models released were all trained
on the NLI (Natural Language Inference) dataset,
which contains 570k human-generated English sen-
tence pairs, manually labeled with one of three
categories: entailment, contradiction and neutral.
They choose the NLI dataset because previous work
has shown that it can be highly effective in generat-
ing universal sentence embeddings (Conneau et al.,
2018). The specific models they release are de-
scribed in Table 3, trained on both the base (dim
= 768) and large versions (dim = 1024) of BERT
that both use mean pooling. We also analyze mod-
els that were fine-tuned on the STS Benchmark
dataset, which makes them better suited for seman-
tic textual similarity and–we hypothesize–better for
clustering semantic frames (Cer et al., 2017).

3 Dataset

The FrameNet dataset is a large-scale effort of man-
ually annotating sentences with semantic frames
that represent common semantic situations found
in text, such as having possession of an object. We
use Release 1.7 of the FrameNet data, maintained

by the International Computer Science Institute
(ICSI) in affiliation with UC Berkeley (ICSI UC
Berkeley, 2020). This dataset contains 7 corpuses
and 102 documents, with 4938 total sentences and
797 unique frames.

Figure 1 contains an example row of the parsed
dataset. In this example, we see that the sentence is
part of the corpus ANC. Each corpus has multiple
documents, and this sentence is part of the doc-
ument 110CYL067. The annotators labeled this
sentence with 6 frames, each corresponding to a
different word in the sentence.

4 Evaluation

The goal of our evaluation is to see if:

1. vector semantic spaces form good clusters for
different semantic frames

2. any patterns exist in which frames cluster to-
gether more or less tightly than others

3. there are differences in clusters depending
upon which model we use

4.1 Setup
To cluster data, we first generate sentence embed-
dings for all sentences in our dataset using the
SBERT models described earlier. Then, we select
data based on different clusters we want to exam-
ine (e.g., semantic frame), and label sentences with
those facets (e.g., sentences from Desiring frame;
sentences from Possession frame; etc.). Finally, we
compute our evaluation metrics on each of these
groups, which are described in the following sec-
tion.

4.2 Measures
To evaluate how well corpuses, documents, and
semantic frames are clustered together in the vector
semantic space, we borrow measures from cluster
analysis how well clustered sentences are in the
space. We compute a silhouette score for each
cluster labeled by a semantic frame (Rousseeuw,
1987). The silhouette score takes into account both
how cohesive individual clusters are (a(i)) and how
separated clusters are from one another (b(i)). The
measure for a single score is computed as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

dist(i, j)



b(i) = min
k 6=i

1

Ck

∑
j∈Ck,

dist(i, j)

Silhouette scores range from -1 to 1, where -1 in-
dicates little separation between clusters and high
dissimilarity between points in a cluster, and 1 in-
dicates good separation between cluster and low
dissimilarity within the cluster. To compute a score
for an entire cluster, the average of scores within
that cluster are taken. To compute a score for the
entire dataset (i.e., performance across clusters),
the max of average scores is taken.

As the silhouette coefficient is a composite mea-
sure of clustering performance, we also separately
compute additional intra-cluster measures for how
tightly sentences within a cluster are together using.
First, we compute the average diameter distance
(ADD)1, or the average distance between all ob-
jects belonging to the same cluster which is defined
as:

ADD(C) =
1

|C| ∗ (|C| − 1)

∑
i,j∈C,i6=j

dist(i, j)

Second, we compute the complete diameter dis-
tance (CDD), or the maximum distance between
two points in a cluster, which is defined as:

CDD(C) = max
i,j∈C

dist(i, j)

These measures give us additional details into how
cohesive clusters are for different semantic frames.

For all distance calculations, we use Manhat-
tan distance instead of Euclidean distance due to
the dimensionality of the sentence embedding vec-
tors (Aggarwal et al., 2001).

5 Results

Below we present our findings on semantic frame
clustering. We present overall clustering perfor-
mance for each model, and analyze the perfor-
mance on individual clusters.

5.1 Overall Clustering Performance

Overall silhouette scores on semantic frame clus-
ters show that SBERT models do not cluster se-
mantic frames well; see Figure 2. Both the base
and large model reported negative silhouette scores,
which indicate that the clusters are likely not
very separated. The models fine-tuned on the

1This measure is equivalent to a(i) in the silhouette coeffi-
cient when averaged over all points in a cluster.

Figure 2: Average Silhouette scores across all sen-
tences in each model.

Figure 3: Largest and smallest semantic frame clusters
by average diameter distance

STS benchmark reported slightly better silhouette
scores, but were still negative overall, indicating
poor separation (b(i)) and cohesion (a(i)). We
believe this may be occurring due to the high-
dimensionality of the SBERT models making the
vector space very large. In the next section, we fo-
cus our individual cluster analysis on the fine-tuned
models since they had slightly better performance.

5.2 Analyzing Individual Clusters

Beyond overall clustering effectiveness, we evalu-
ate what semantic frames are better or worse clus-
tered by their intra-cluster measures. Figure 3
shows the 5 smallest clusters and 5 largest clus-
ters for the base and large SBERT models trained
on the NLI dataset and fine-tuned with the STS
benchmark.

Interestingly, both models share 4 out of 5 of the
smallest frames, but only 1 of the largest frames
(Timespan). However, it is important to also note
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Figure 4: Impact of occurrence count of frames on
intra-cluster distance. Red line indicates the mean num-
ber of sentences frames occurred in.

the number of sentences that contain those semantic
frames. On average, semantic frames were found in
36 sentences, which is much higher than how often
any of the frames above were found in sentences.
This tells us that the sentences that contain these
frames are either (1) very similar sentences with
similar embeddings and thus are clustered closely
together; or (2) very different sentences with rarely
used semantic frames and thus clustered far from
one another.

Following our realization that the number of sen-
tences in a semantic frame impacted the clustering
results, we explored the extent of this impact. Fig-
ure 4, shows the distribution of how intra cluster
distance (measured by average diameter distance
of frame cluster) varies based on the occurrence
count of the frame cluster (number of times frame
occurs). We see that, for frames close to the mean
occurrence count (the red dotted line), there is very
little spread, approximately just 100 units of dis-
tance, which suggests to us that all frames might
be almost equally well-clustered. However, we do
not know how much better a cluster 100 units more
tightly clustered is than another, and need better
baselines to draw more meaningful conclusions.

6 Limitations and Future Work

A key limitation of our current work is that the
SBERT model used was not fine-tuned on the
FrameNet dataset, which previous work has shown

can yield a large performance benefit if done (De-
vlin et al., 2019). In future work, we plan to set
aside 80% of the data we have (approximately 4000
sentences and their semantic frames) to train, and
evaluate on the remaining 20%; we will replicate
the analysis above with the remaining 20% so that
the results are comparable. We will also try to fine-
tune and analyze the performance of an SBERT
model designed for a multi-label classification task
where we try to predict what semantic frames are
present in a given sentence. Another approach to
improving performance might be to use models
with lower dimensionality to address any potential
issues with the curse of dimensionality we might
be experiencing here.

Lastly, this work can be extended by looking at
co-occurrence and intersection of semantic frames
in clusters. Since sentences can have multiple
frames in them, it might be valuable to see if co-
occurring frames are more closely clustered than
individual frames. In future work, we also plan to
perform a co-occurrence and intersection analysis
to see how similarity between pairs of sentences
changes as sentences have more common frames,
and to see which combinations (co-occurrences) of
shared frames most greatly impacts similarity, and
whether any patterns exist.

7 Conclusion

In this paper, we attempt to explore how vector
space models can cluster semantic frames together
in the embedding space. We perform cluster analy-
sis using FrameNet data with hand-labeled seman-
tic frames and Sentence BERT models to generate
sentence embeddings. Though we found that over-
all clustering performance was not good when us-
ing Sentence BERT models, we hope that this line
of work can be further refined as detailed above.
Intuitively, we still feel that semantic frames must
be represented to some capacity in these vector
space models. In exploring this further, we hope
that mixed-initiative systems can be built to expand
the FrameNet labeling initiative.
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